Evaluating Brain-Computer Interface Performance in an ALS Population: Checkerboard and Color Paradigms.

نویسندگان

  • David B Ryan
  • Kenneth A Colwell
  • Chandra S Throckmorton
  • Leslie M Collins
  • Kevin Caves
  • Eric W Sellers
چکیده

The objective of this study was to investigate the performance of 3 brain-computer interface (BCI) paradigms in an amyotrophic lateral sclerosis (ALS) population (n = 11). Using a repeated-measures design, participants completed 3 BCI conditions: row/column (RCW), checkerboard (CBW), and gray-to-color (CBC). Based on previous studies, it is hypothesized that the CBC and CBW conditions will result in higher accuracy, information transfer rate, waveform amplitude, and user preference over the RCW condition. An offline dynamic stopping simulation will also increase information transfer rate. Higher mean accuracy was observed in the CBC condition (89.7%), followed by the CBW (84.3%) condition, and lowest in the RCW condition (78.7%); however, these differences did not reach statistical significance ( P = .062). Eight of the eleven participants preferred the CBC and the remaining three preferred the CBW conditions. The offline dynamic stopping simulation significantly increased information transfer rate ( P = .005) and decreased accuracy ( P < .000). The findings of this study suggest that color stimuli provide a modest improvement in performance and that participants prefer color stimuli over monochromatic stimuli. Given these findings, BCI paradigms that use color stimuli should be considered for individuals who have ALS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns.

OBJECTIVE An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation - the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell an...

متن کامل

Suppressing flashes of items surrounding targets during calibration of a P300-based brain-computer interface improves performance.

Since the introduction of the P300 brain-computer interface (BCI) speller by Farwell and Donchin in 1988, the speed and accuracy of the system has been significantly improved. Larger electrode montages and various signal processing techniques are responsible for most of the improvement in performance. New presentation paradigms have also led to improvements in bit rate and accuracy (e.g. Townse...

متن کامل

Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement

Steady-state visual evoked potential (SSVEP) is one of the typical stimulation paradigms of brain-computer interface (BCI). It has become a research approach to improve the performance of human-computer interaction, because of its advantages including multiple objectives, less recording electrodes for electroencephalogram (EEG) signals, and strong anti-interference capacity. Traditional SSVEP u...

متن کامل

Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System

 Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical EEG and neuroscience

دوره 49 2  شماره 

صفحات  -

تاریخ انتشار 2018